Tuesday, March 29, 2011

By Alternative Elimination and Retention

This sutra is helpful in case of factorization of quadratic equation.

It is very difficult to factorise the long quadratic (2x2+ 6y2 + 3z2 + 7xy + 11yz + 7zx). But "Lopana-Sthapana" or By Alternative Elimination and Retention removes the difficulty

Example 1
Lets assume E =(2x2 + 6y2 + 3z2 + 7xy + 11yz + 7zx)
By "Lopana-Sthapana" we eliminate z by putting z = 0.

Hence the given expression becomes ,
                   E = 2x2 + 6v+ 7xy = (x+2y) (2x+3y)

Similarly, if y=0, then,
                   E = 2x2+ 3z2 + 7zx = (x+3z) (2x+z)
We get , E = (x+2y+3z) (2x+3y+z)

Factorizing we get 
2x2 + 2y2+ 5xy + 2x- 5y –12 = (x+3) (2x-4) and (2y+3) (y-4)

Hence Result , E = (x+2y+3) (2x+y-4)

* This "Lopana-sthapana" method (of alternate elimination and retention) will be found highly useful in HCF, in Solid Geometry and in Co-ordinate Geometry of the straight line, the Hyperbola, the conjugate Hyperbola, the Asymptotes etc.

Febriana Febriana

About Febriana Febriana

Author Description here.. Nulla sagittis convallis. Curabitur consequat. Quisque metus enim, venenatis fermentum, mollis in, porta et, nibh. Duis vulputate elit in elit. Mauris dictum libero id justo.